Training objectives
· Poznanie metod statystycznych służących do prognozowania przebiegu procesów (sprzedażowych, zakupowych, logistycznych, itp.) na podstawie ich historii.
· Zdobycie wiedzy na temat praktycznego wykorzystania metod analizy regresji i analiz szeregów czasowych
w prognozowaniu.
· Nabycie umiejętności praktycznego wykorzystania metod statystycznych w prognozowaniu z wykorzystaniem środowiska MINITAB (wybór metody, obliczenia, interpretacja wyników).
Dates and location
Downloads
Practical part estimated contribution: 75%
Duration time: 2 dni po 7 godz.
Scope and exercises
· Wprowadzenie. Metody statystyczne – zakres stosowania, wybrane dokumenty (ISO 9000:2015, ISO 9001:2015, Raport Techniczny ISO/TR 10017 - Wytyczne dotyczące technik statystycznych odnoszących się do ISO 9001). Metody statystyczne w zakresie prognozowania.
· Prognozowanie statystyczne. Podstawowe definicje, metody prognozowania (modele ekonometryczne, modele szeregów czasowych, metody eksperckie), błędy prognozy (ex ante, ex post).
· Obsługa programu Minitab – podstawy. Interfejs użytkownika, okna: Navigator (historia projektu), Output pane (wyniki obliczeń, rysunki), Data Pane (arkusz danych), Command Line/History (zapis projektu w języku Minitaba, zbiory do autoegzekucji, makrodefinicje). Pliki typu Minitab - .mwx, .mpx, .mtb, .mac. Arkusz danych: wprowadzanie danych (typy danych – liczbowe, tekstowe, data/godzina, waluta), operacje na danych (łączenie, dzielenie, itp.), import, eksport, obsługiwane formaty. Definiowanie projektów. Obliczanie podstawowych parametrów opisowych, graficzna prezentacja, rozkład normalny, graficzny test normalności (normal probability plot), test Andersona-Darlinga. Identyfikacja i eliminacja wyników izolowanych (odskakujących) - testy Grubbsa, Dixona.
· Modele ekonometryczne. Korelacja, model regresyjny (liniowy, nieliniowy), regresja wielokrotna. Zasady budowy modeli ekonometrycznych (pożądane cechy modelu, dobór zmiennych, ocena współliniowości, analiza stabilności), prognoza długoterminowa, prognoza krótkoterminowa. Interpretacja - przedział predykcji a przedział prognozy. Model liniowy – regresja liniowa z jedną zmienną objaśniającą; wyznaczanie i interpretacja współczynnika korelacji, współczynnik determinacji , wyznaczanie i interpretacja równania regresji liniowej (prosta regresji), ocena błędu oszacowania zmiennej wynikowej (y) na podstawie zmiennej objaśniającej (x). Regresja wielokrotna liniowa – dobór optymalnego równania regresji („na piechotę”, metoda dołączania, odrzucania, najlepszego podzbioru). Nieliniowe modele regresyjne (sprowadzalne do modelu liniowego). Ocena poprawności modelu i siły predykcji. Testy statystyczne towarzyszące analizie regresji. Graficzna prezentacja wyników.
· Modele szeregów czasowych. Składowe szeregu czasowego (trend, sezonowość, cykliczność, składowa przypadkowa). Dekompozycja szeregu czasowego - metoda addytywna, metoda multiplikatywna. Wygładzanie danych – metoda średniej ruchomej, wygładzanie wykładnicze (pojedyncze, podwójne), metoda Wintera, metoda Holta. Modele ARMA, ARIMA – budowa, dobór, analiza autokorelacji (funkcja autokorelacji ACF) oraz autokorelacji cząstkowej (funkcja autokorelacji cząstkowej PACF). Możliwości wykorzystania funkcji korelacji krzyżowej (CCF).
· Ocena jakości prognozy. Błędy prognozy – rodzaje błędów, wyznaczanie, interpretacja. Błąd średniokwadratowy MSD, średni błąd absolutny MAD, procentowy średni błąd absolutny MAPE, błąd średniokwadratowy RMSE.
· Prognozowanie zjawisk jakościowych. Podstawy wykorzystania i interpretacji modeli regresji logistycznej.
· Indeksowanie danych. Indeksy, znaczenie indeksów, rodzaje indeksów (proste, agregatowe), prognozowanie
w oparciu o dane indeksowane.
· Podsumowanie, dyskusja.
Ćwiczenia:
· Ogólna statystyczna analiza danych (parametry opisowe, histogram, rozkład normalny, graficzny test normalności, identyfikacja wyników izolowanych – testy Grubbsa, Dixona).
· Regresja liniowa z jedną zmienną objaśniającą – wyznaczanie i interpretacja równania regresji, testy istotności, interpretacja według analizy wariancji (ANOVA), miary mocy zależności liniowej – współczynnik korelacji Pearsona, współczynnik determinacji, zasady predykcji.
· Regresja wielokrotna liniowa – wyznaczanie i interpretacja równania regresji, testy istotności, interpretacja, interpretacja według analizy wariancji (ANOVA), dobór zmiennych objaśniających (predyktorów) – metody dołączania, odrzucania, dołączania i odrzucania, metoda najlepszego podzbioru, zasady predykcji.
· Graficzna prezentacja szeregów czasowych.
· Analiza trendu – trend liniowy, trend sprowadzalny do modelu liniowego, trend nieliniowy.
· Dekompozycja szeregu czasowego – model multiplikatywny, model addytywny.
· Wygładzanie – metoda średniej ruchomej, metoda wykładnicza (rząd pierwszy), metoda wykładnicza (rząd drugi).
· Metoda Wintera.
· Wyznaczanie funkcji autokorelacji – funkcja autokorelacji (ACF), funkcja autokorelacji cząstkowej (PACF), funkcja autokorelacji krzyżowej (CACF).
· Metody ARMA, ARIMA – wybór modelu, interpretacja wyników.
· Regresja logistyczna – konstrukcja modelu, interpretacja wyników.
Analizy rachunkowe przeprowadzane w środowisku Minitab.
Benefits for participant
Uczestnik uczy się:
· Identyfikować zapotrzebowanie na stosowanie narzędzi statystycznych w prognozowaniu.
· W jaki sposób dokonuje się wyboru, budowy i interpretacji modelu prognostycznego.
· Praktycznego posługiwania się narzędziami statystycznymi w prognozowaniu – dobór narzędzi, zasady rachunkowe
i interpretacyjne.
Uczestnik dowie się:
· Jakie są aktualnie wykorzystywane standardy i praktyki odnośnie prognozowania statystycznego.
· Według jakich kryteriów dobrać właściwy model prognostyczny.
· Jakich kryteriów używać odnośnie interpretacji wyników analiz prognostycznych.
Recipients
· Osoby zajmujące się analizą rynku zakupów, sprzedaży, prognozowaniem kosztów, zapotrzebowania materiałowego
i zbytu.
· Osoby odpowiedzialne za definiowanie strategii.
· Pracownicy działów rozwoju.
· Liderzy i członkowie zespołów doskonalących.
Additional information
Szkolenie prowadzone zdalnie poprzez sesję wideokonferencji on-line z wykorzystaniem dedykowanych narzędzi.
Uczestnicy dostają link do otwarcia sesji.
Materiały dostępne w wersji elektronicznej.